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CHAPTER

ONE

INTRODUCTION

TensCalc is a MATLAB© toolbox that generates optimized code to perform computations involving tensors,
i.e., multi-dimensional arrays. TensCalc was specifically designed to solve nonlinear constrained optimiza-
tions very efficiently, but its code generation engine can be used to generate code to perform much more
general computations.

TensCalc is aimed at scenarios where one needs to perform very fast a large number of computations (e.g.,
optimizations) that depend on parameters that change from one instance of the computation to the next in-
stance, but the overall structure of the computation remains the same. This is common in applications where
the computations/optimizations depend on measured data and one wants to compute optima for large or
evolving datasets, e.g., in robust estimation and classification, maximum likelihood estimation, model pre-
dictive control (MPC), moving horizon estimation (MHE), and combined MPC-MHE (which requires the
computation of a saddle-point equilibrium).

1.1 What type of code is generated by TensCalc?

TensCalc can either produce optimized MATLAB© or C code. The former is only preferable for very large
problems with mild speed requirements, whereas the latter is aimed at small to medium-size problems that
need to be solved in just a few milliseconds.

The C code is completely self-contained and library free (aside from the C standard library), making it
extremely portable.

For ease of use within MATLAB©, both the C and MATLAB© code are encapsulated into MATLAB©
classes that appear indistinguishable to the MATLAB© user, aside from the speed of execution. Within
the class wrapper, the C code is called from MATLAB© using the cmex interface and dynamic libraries.
Typically, C code is 10-100 times faster.
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1.2 Which optimizations is TensCalc best at?

In the context of optimizations, TensCalc is mostly aimed at generating solvers for optimizations with up to a
few thousands of optimization variables/constraints and solve times up to a few milliseconds. The variables to
be optimized can be multi-dimensional arrays of any dimension (tensors) and the cost functions and inequality
constraints are specified using MATLAB©-like formulas.

TensCalc’s optimization solvers uses primal-dual interior point methods and uses formulas for the gradient
and the hessian matrix that are computed symbolically in an automated fashion.

1.3 Why is TensCalc-generated code fast?

The speed achieved by code generated by TensCalc arises from a combination of features: reuse of interme-
diate computations across and within iterations of the solver, detection and exploitation of matrix sparsity,
avoidance of run-time memory allocation and garbage collection, and reliance on flat code that improves
the efficiency of the micro-processor pipelining and caching. All these features have been automated and
embedded into the code generation process.

A price to pay for TensCalc’s speed is that the structure of the computation/optimization is fixed at code-
generation time. This has two important consequences:

• the sizes of all variables must be specified at code-generation time, and

• the sparsity structure of all computations is automatically determined at code-generation time and
assume that all external parameters will generally be nonzero.

1.4 How does TensCalc syntax compare to MATLAB©?

TensCalc computations are defined using operations on symbolic variables that very much resemble MAT-
LAB©’s functions and operators. This means that MATLAB© user’s will easily understand TensCalc’s
syntax. However, there are a few key issues that must be kept in mind:

• TensCalc is very picky about the sizes of tensors and several conversions of sizes that MATLAB©
performs automatically must be done manually in TensCalc. For example, TensCalc distinguishes
between 2-by-1 matrices and 2-vector (see What are Tensors?), which cannot be added together in
TensCalc without an explicit reshape() operation.

Warning: This is likely the case for most syntax errors when seasoned MATLAB© users first
start to work with TensCalc.

• A few TensCalc functions have slightly different behavior (and sometimes syntax) than the correspond-
ing MATLAB© function with the same name. Examples of this include the matrix inverse inv and
determinant det that in TensCalc can only be applied to matrices that have been factorized using lu
or ldl.

2 Chapter 1. Introduction
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• TensCalc has a few functions that do not exist in MATLAB©, but can be used to generate more efficient
code; most notably the function tprod() that provides a very general multiplication operation between
tensors (see Tensor product). This operation includes the usual matrix multiplication *() as a special
case, the summation over rows and/or columns sum(), computing the trace of a matrix trace(),
extracting a matrix main diagonal diag(), computing the euclidean norm of a vectors norm(); as
well as generalizations of all these operations to n-dimensional tensors.

1.4. How does TensCalc syntax compare to MATLAB©? 3
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CHAPTER

TWO

INSTALLATION

TensCalc is available on GitHub and requires the installation of 3 toolboxes, which must be installed in the
following order:

1. FunParTools: https://github.com/hespanha/funpartools

2. CmexTools: https://github.com/hespanha/cmextools

3. TensCalc: https://github.com/hespanha/tenscalc

Installations instructions for all these tools is available at GitHub.

2.1 Issues

While most MATLAB© scripts are agnostic to the underlying operating systems (OSs), the use of mex
functions depends heavily on the operating system.

Our goal is to build a toolbox that works across multiple OSs; at least under OSX, linux, and Microsoft
Windows. However, most of our testing was done under OSX so one should expect some bugs under the
other OSs. Currently, it is fair to say that TensCalc has been tested

• fairly extensively under OSX

• lightly under linux

• very lightly under Microsoft Windows

Any help in fixing bugs is greatly appreciated.

5
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CHAPTER

THREE

BASICS

TensCalc computations and optimizations are defined using symbolic expressions supported by the class
Tcalculus, named after tensor calculus.

3.1 What are Tensors?

In TensCalc, tensors are multi-dimensional real-valued arrays over which one performs numerical operations.
The size() of a tensor is a vector that specifies how many entries the tensor has in each dimension. The
following table shows common tensors and their sizes:

Table 1: Common tensor types
name number of dimensions TensCalc’s size mathematical set
scalar 0 [] R
𝑛-vector 1 [n] Rn

𝑛-by-𝑚 matrix 2 [n,m] Rn×m

tensor with 𝑑 of dimensions d [n1,n2,...,nd] Rn1×n2×···×n

Warning: It is common (at least within MATLAB©) to make no distinction between a scalar, a 1-vector,
and a 1-by-1 matrix. In MATLAB© it is also common not to distinguish between an 𝑛-vector and an
𝑛-by-1 matrix. However, TensCalc does make a distinction between all these and does not allow, e.g.,
adding a 2-vector with a 2-by-1 matrix, without an explicit reshape() operation.

TensCalc is slightly more permissive with operations between scalars and tensors of larger sizes in that it
does allow summations between a scalar and a tensor of any size, with the understanding that the scalar is
added to every entry of the tensor, which is consistent with MATLAB©’s syntax.

See Using MATLAB© matrices in TensCalc symbolic expressions regarding the rules for automatic conver-
sion of sizes between MATLAB© matrices and TensCalc tensors.

7
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3.2 Building Tcalculus symbolic expressions

TensCalc symbolic expressions are supported by the class

class Tcalculus

but you never really need to call this class directly. Instead, symbolic expressions are built like regular
MATLAB© expressions using many of the usual MATLAB© operators and functions, which have been
overloaded to operate on TensCalc symbolic expressions.

Warning: To speed up operations, the class Tcalculus keeps some information in a few auxiliary
global variables. Before defining a new computation or optimization it is a good idea to clear these
variables with

clear all

If this is not possible, one can use the following method to just clear Tcalculus’s auxiliary global
variables

Tcalculus.clear()

However, after using this method, any instances of the Tcalculus class that remains in memory becomes
invalid and will lead to errors if used in a subsequent computations or optimizations without necessarily
resulting in a syntax error. It is thus strongly advised to use clear all rather than Tcalculus.clear.

3.2.1 Symbolic variables

Most symbolic expressions start with symbolic variables that represent tensors that will only be assigned
numeric values at code-execution time. Symbolic variables are created using

Tvariable name size

Parameters

• name (character string) – Name of the variable to be created

• size (vector of integers) – Size of the tensor as a vector of integers. When
omitted, the empty size [] is assumed, which corresponds to a scalar.

The variable is created in the caller’s workspace:

>> clear all
>> Tvariable a [3,4];
>> whos

Name Size Bytes Class Attributes
a 3x4 39 Tcalculus
ans 3x4 39 Tcalculus

Tvariable() can also be used as a regular MATLAB© function using the syntax:

8 Chapter 3. Basics
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Tvariable(name, size)

Returns
Tcalculus symbolic expression holding the symbolic variable

In this case, Tvariable() returns a symbolic expression that contains the variable. Note that the name of
the symbolic variable is still given by name regardless of the name of the variable that you use to store it in:

>> clear all
>> y=Tvariable('a',[3,4]);
>> whos

Name Size Bytes Class Attributes
y 3x4 39 Tcalculus

>> disp(y)
variable1 = variable('a',) : [3,4]

3.2.2 Using MATLAB© matrices in TensCalc symbolic expressions

Often symbolic expressions involve regular MATLAB© matrices, as in adding a symbolic variable created
with Tvariable() with a regular MATLAB© matrix:

>> Tvariable a [2,2]
>> b=a+[2,1;3,4]

The following rules are used to convert MATLAB© matrices to TensCalc symbolic expressions. In essence,
the conversion is completely transparent unless the matrix is 1-by-1 or n-by-1.

Table 2: Rules for automatic convertion between MATLAB© ma-
trices and TensCalc tensors

MATLAB© variable MATLAB©’s size TensCalc variable TensCalc’s size
1-by-1 matrix [1,1] scalar []

n-by-1 column matrix [n,1] n-vector [n]

1-by-n row matrix [1,n] 1-by-n tensor [1,n]

m-by-n matrix [m,n] m-by-n tensor [m,n]

n1-by-n2- . . . -by-nd matrix [n1,n2,...,nd] n1-by-n2- . . . -by-nd tensor [n1,n2,...,nd]

TensCalc also provides a few functions that can be used to directly create symbolic tensors that can be useful
when either the rules above do not have the desired effect (e.g., in the somewhat unlikely case wants to create
a 1-by-1 tensor, rather than a scalar) or when it is more efficient to directly create the symbolic tensor.

3.2. Building Tcalculus symbolic expressions 9
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Table 3: Functions to create (constant) tensors
Usage Description Notes

Tzeros([n1, ..., nd ])
Tzeros(n1, ..., nd)

Returns a tensor with all entries
equal to 0. The tensor size can be
provided as a single vector with the
number of entries in all directions, or
as multiple input parameters, one per
dimension.

This function can be used inter-
changeably with the regular MAT-
LAB© function zeros, as long as
the the size conversion rules in Rules
for automatic convertion between
MATLAB© matrices and TensCalc
tensors are appropriate.

Tones([n1, ..., nd ])
Tones(n1, ..., nd)

Returns a tensor with all entries
equal to 1. The tensor size is spec-
ified as in Tzeros().

This function can be used inter-
changeably with the regular MAT-
LAB© function ones, as long as the
the size conversion rules in Rules for
automatic convertion between MAT-
LAB© matrices and TensCalc ten-
sors are appropriate.

Teye([n1, ..., nk, n1, ...,
nk ])

Teye(n1, ..., nk, n1, ...,
nk)

Returns an “identity” tensor with all
entries equal to zero, except for the
entries with the indice 1 equal to the
indice k+1, the indice 2 equal to the
indice k+2, . . . , as in
(i1,i2,...,ik,i1,i2,...,ik)
These entries are all equal to 1.

For k=1, this function can be used
interchangeably with the regular
MATLAB© function eye, but is
convenient to generate “identity”
tensors with a larger number of di-
mensions.

Tconstant(mat, size)
Returns a tensor with entries given
by the matrix mat and size specified
by size as in Tzeros().

This function is typically used to
override the size conversion rules in
Rules for automatic convertion be-
tween MATLAB© matrices and Ten-
sCalc tensors.

Warning: When called with a single argument Tzeros(), Tones(), and Teye() differ from their
MATLAB© counterparts: Tzeros() and Tones() return vectors (i.e., tensors with 1 dimension), rather
than square matrices, and Teye() generates an error since it has no counter-part for vectors.

10 Chapter 3. Basics
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3.3 Accessing information about the size of symbolic variables

Table 4: Functions to access information about symbolic expres-
sions

Usage Description Notes

size(X)

[n1,n2,..
.,
nd]=size(X)

size(X,
dim)

Size of a tensor Similar syntax to MATLAB©

ndims(X)
Number of dimensions in a tensor Similar syntax to MATLAB©. Note that

a scalar (which has empty size = []) al-
ways has 0 dimensions.

numel(X)
Number of elements in a tensor Similar syntax to MATLAB©. Note that

a scalar (which has empty size = []) al-
ways has 1 elements.

length(X)
Length of a tensor Similar syntax to MATLAB©. Note that

a scalar (which has empty size = []) al-
ways has 1 elements.

isempty(X)
True for an empty tensor Similar syntax to MATLAB©. Note that

a scalar (which has empty size = []) al-
ways has 1 elements so it is never empty.

3.4 Indexing and resizing symbolic variables

TensCalc uses the same syntax as MATLAB© to index tensors:

• X(i,j,k,...) returns a subtensor formed by the elements of X with subscripts vectors i,j,k,...

The resulting tensor has the same number of dimensions as X, with lengths along each dimension given
by length(i), length(j), length(k),...

• A colon : can be used as a subscript to indicate all subscripts on that particular dimension.

• The keyword end can be used within an indexing expression to denote the last index. Specifically, end
= size(X,k) when used as part of the kth index.

• subsref(X,S)with a subscript reference structure S behaves as in regular MATLAB©, with he caveat
that entries of the tensor must always be indexed using subscripts the type (). However, this does not
preclude the construction of cells of Tcalculus objects.

3.3. Accessing information about the size of symbolic variables 11
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Table 5: Functions reshape and resize symbolic variables
Usage Description Notes

reshape(X, size)
reshape(X, n1, ...,

nd)

Reshape array Similar syntax to MATLAB©, except that it does
not support using [] as one of the dimensions.

repmat(X, size)
repmat(X, n1, ..., nd)

Replicate and tile tensor Similar syntax to MATLAB©, with the understand-
ing that the number of dimensions of X must be
strictly preserved. Often repmat() needs to be
combined with reshape() to obtain the desired ef-
fect. For example to replicate twice a 3-vector X to
create a 3-by-2 matrix by placing the copies of X
side by side, one needs:

Y=repmat(reshape(X,3,1),1,2);

or, to create a 2-by-3 matrix by placing the copies
of X one on top of the other, one needs:

Y=repmat(reshape(X,1,3),2,1);

cat(dim, A, B, ...)
Concatenate tensors
along the dimension
dim

Similar syntax to MATLAB©, with the understand-
ing that the number of dimensions of the input ten-
sors A,B,...must match for all but dimensions but
dim. TensCalc will try to add singleton dimensions
to make cat() succeed as best as it can. For ex-
ample in the following code, the scalar variable a
with size [] is augmented to the size [1,1] so that
concatenation to a 2-by-3 matrix is possible:

>> Tvariable a [];
>> b=[a,a,a;a,a,a];
>> size(b)
ans =

2 3

and in the following code, the vector variable bwith
size [3] is augmented to the size [3,1] so that con-
catenation to a 3-by-2 matrix is possible:

>> Tvariable b [3];
>> c=[b,b];
>> size(c)
ans =

3 2

vertcat(A, B, ...)
Concatenate tensors
along the 1st dimension,
which is equivalent to
cat(1,A,B,...)`
and also to ``[A;
B;...]

Similar syntax to MATLAB©, with the same
caveats as cat().

horzcat(dim, A, B,
...)

Concatenate tensors
along the 2nd di-
mension, which is
equivalent to cat(2,
A,B,...) and also to
[A,B,...]

Similar syntax to MATLAB©, with the same
caveats as cat().

vec2tensor(X, sz,
subs)

vec2tensor(X, sz,
subs,
dim)

Expands a vector to a
sparse tensor In the 1st form

param X
Tcalculus n-vector (tensor
with size [n])

param sz
vector with d integers

param subs
n-by-d matrix of subscripts

and returns a Tcalculus tensor Y with size
sz, with the nonzero entries taken from X, with
Y(subs(i,:))=X(i) for i=1:n
In the 2nd form

param X
Tcalculus tensor X with
size(X,dim)=n

param sz
vector with d integers

param subs
n-by-d matrix subscripts

and returns a Tcalculus tensor Y with size simi-
lar to that of X, but the dim dimension expanded to
the sizes in sz, and the nonzero entries taken from
X, with Y(...,subs(i,:),...)=X(...,i,...)
for i=1:n, where the ... denote indices of the di-
mensions before and after dim
This function is typically used to create sparse ten-
sors from the entries of a (typically full) vector. See
Creating structured matrices

12 Chapter 3. Basics
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Warning: Unlike MATLAB©, TensCalc does not allow for subscripted assignments, such as

A(1,2)=5

This functionality needs to be achieved with the concatenation operations cat(), vertcat(),
horzcat().

3.4.1 Creating structured matrices

The function vec2tensor() is very useful to create structured matrices from vectors, to be used as opti-
mization variables

• Diagonal matrix:

% Creates an NxN diagonal matrix
Tvariable v [N];
A=vec2tensor(v,[N,N],[1:N;1:N]');

• Lower triangular matrix:

% Creates an NxN lower triangular matrix
[i,j]=find(ones(N));
k=find(i>=j);
Tvariable v length(k);
A=vec2tensor(v,[N,N],[i(k),j(k)]);

• Symmetric matrix:

% Creates an NxN symmetric matrix
[i,j]=find(ones(N));
kl=find(i>j);
k0=find(i==j);
Tvariable v length(k0)+length(kl);
A=vec2tensor([v;v(1:length(kl))],[N,N],[i(kl),j(kl);i(k0),j(k0);j(kl),
→˓i(kl)]);

• Matrix with the same sparsity structure as a known matrix:

% Creates a matrix with the sparsity structure of S
[i,j]=find(S);
Tvariable v length(i);
A=vec2tensor(v,size(S),[i,j]);

In all these examples, one would set v to be an optimization variable, that implicitly represents the structured
matrix.

3.4. Indexing and resizing symbolic variables 13



Tencalc Users’ Guide, Release 0.1a

14 Chapter 3. Basics



CHAPTER

FOUR

OPERATIONS ON SYMBOLIC EXPRESSIONS

4.1 Arithmetic operations

TensCalc supports most of the basic arithmetic operations in MATLAB©, in most cases using the same or a
very similar syntax.

15
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Table 1: Basic arithmetic operations
Usage Description Notes

X + Y

plus(X, Y)

Entry-by-entry addition of tensors of the
same size or of a scalar with a tensor of
arbitrary size.

Unlike MATLAB©’s regular plus(),
expansion upon singleton dimensions is
not performed automatically to match
the tensors’ sizes.

X - Y

minus(X, Y)

Entry-by-entry subtraction of tensors of
the same size or of a scalar with a tensor
of arbitrary size.

Unlike MATLAB©’s regular minus(),
expansion upon singleton dimensions is
not performed automatically to match
the tensors’ sizes.

X .* Y

times(X, Y)

Entry-by-entry multiplication of tensors
of the same size or of a scalar with a ten-
sor of arbitrary size.

Unlike MATLAB©’s regular times(),
expansion upon singleton dimensions is
not performed automatically to match
the tensors’ sizes.

X * Y

mtimes(X, Y)

Matrix multiplication of tensors that
adapts to the size of the operands as fol-
lows:

• regular matrix multiplication
when X and Y are both matrices
(tensors with 2 dimensions) with
size(X,2)==size(Y,1)

• matrix by column-vector multipli-
cation when X is a matrix (tensor
with 2 dimensions) and Y a vec-
tor (tensor with 1 dimension) with
size(X,2)==size(Y,1)

• row vector by matrix multiplica-
tion when X is a vector (tensor
with 1 dimension) and Y a matrix
(tensors with 2 dimensions) with
size(X,1)==size(Y,1)

• inner product when X and Y
are both vectors (tensors with
1 dimension) with size(X,
1)==size(Y,1)

• entry-by-entry multiplication with
either X or Y are scalars (tensor
with 0 dimensions).

Depending on the sizes of the parame-
ters, this operation may behave quite dif-
ferently from MATLAB©’s matrix mul-
tiplication mtimes().

X ./ Y

rdivide(X, Y)

Entry-by-entry right division of tensors
of the same size or of a scalar with a ten-
sor of arbitrary size.

Unlike MATLAB©’s regular
rdivide(), expansion upon sin-
gleton dimensions is not performed
automatically to match matrix sizes.

X .\\ Y

ldivide(X, Y)

Entry-by-entry left division of tensors of
the same size or of a scalar with a tensor
of arbitrary size.

Unlike MATLAB©’s regular
ldivide(), expansion upon sin-
gleton dimensions is not performed
automatically to match matrix sizes.

sum(X, vecdim)

sum(X, 'all')

Sum of entries of the tensor X along
the directions specified by the vector
vecdim, or over all dimensions. Result-
ing in a vector with the same size as X,
but with the dimensions in vecdim re-
moved.

Similar syntax to MATLAB©

max(X)

max(X[],
vecdim)

max(X[], 'all')

Maximum entry of the tensor X along its
1st dimension (1st form), the dimensions
specified in vecdim (2nd form), or along
all dimensions (3rd form).

Similar syntax to MATLAB©, with the
exception that it does not return a second
output with indices.

max(X, Y)
For two tensors X and Y with the same
size, returns a tensor M also with the
same size, but with entries taken from
X or Y, depending on which entry is
largest. If X is a scalar, then M has the
same size as Y and its entries are the
largest of the corresponding entry of Y
or the (only) entry of X. Similarly if Y is
a scalar.

Similar syntax to MATLAB©.

min(X)

min(X[],
vecdim)

min(X[], 'all')

Minimum entry of the tensor X along its
1st dimension (1st form), the dimensions
specified in vecdim (2nd form), or along
all dimensions (3rd form).

Similar syntax to MATLAB©, with the
exception that it does not return a second
output with indices.

min(X, Y)
For two tensors X and Y with the same
size, returns a tensor M also with the
same size, but with entries taken from X
or Y, depending on which entry is small-
est. If X is a scalar, then M has the same
size as Y and its entries are the small-
est of the corresponding entry of Y or
the (only) entry of X. Similarly if Y is
a scalar.

Similar syntax to MATLAB©.

full(X)
Converts sparse tensor to full in the
sense that subsequent computations will
not take advantage of the information
that some entries are known to be zero.

The main use of this function is to
force the results of a computation to be
returned in a linear memory structure
with all the zeros filled in appropriately.
This is generally required to return n-
dimensional tensors to MATLAB© with
n>2, since MATLAB© does not support
sparse arrays with more than 2 dimen-
sions.

tprod(A1,
index1,
A2,
index2,
...)

Tensor product See Tensor product

16 Chapter 4. Operations on symbolic expressions
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4.1.1 Tensor product

The function tprod() provides a very general and flexible multiplication operation between tensors, which
includes the usual matrix multiplication * as a special case, the summation over rows and/or columns sum(),
computing the trace of a matrix trace(), extracting a matrix main diagonal diag(), computing the Eu-
clidean norm of a vectors norm(); as well as generalizations of all these operations to n-dimensional tensors:

tprod(A, a, B, b, C, c, ...)

Parameters

• A (Tcalculus symbolic tensor) – 1st tensor

• a (vector of integers) – indices for A with length ndims(A)

• B (Tcalculus symbolic tensor) – 2nd tensor

• b (vector of integers) – indices for B with length ndims(B)

• C (Tcalculus symbolic tensor) – 3rd tensor

• c (vector of integers) – indices for C with length ndims(C)

tprod() returns a tensor Y obtained using a summation-product operation of the form

𝑌 (𝑦1, 𝑦2, ...) =
∑︁
𝑠1

∑︁
𝑠2

· · ·𝐴(𝑎1, 𝑎2, ...)𝐵(𝑏1, 𝑏2, ...)𝐶(𝑐1, 𝑐2, ...) · · ·

with the matching between the result tensor indices 𝑦1, 𝑦2, ..., the summation indices 𝑠1, 𝑠2, ..., and the input
tensors indices 𝑎1, 𝑎2, ..., 𝑏1, 𝑏2, ..., 𝑐1, 𝑐2, ... is determines as follows:

• A negative values of -1 in one or several of the input tensor indices 𝑎1, 𝑎2, ..., 𝑏1, 𝑏2, ..., 𝑐1, 𝑐2, ...means
those particular indices should be summed under the 1st summation operation.

• A negative values of -2 in one or several of the input tensor indices 𝑎1, 𝑎2, ..., 𝑏1, 𝑏2, ..., 𝑐1, 𝑐2, ...means
those particular indices should be summed under the 2nd summation operation.

. . .

• The absence of a negative index means that there are no summations.

• A positive value of +1 in one or several of the input tensor indices means those indices should match
the 1st index 𝑦1 of the result tensor 𝑌 .

• A positive value of +2 in one or several of the input tensor indices means those indices should match
the 2nd index 𝑦1 of the result tensor 𝑌 .

. . .

• The absence of a positive index means that the result has an empty size (i.e., it is a scalar).

A few examples are helpful to clarify the syntax and highlight the flexibility of tprod():

Tvariable A [m,n];
Tvariable x [n]

(continues on next page)
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(continued from previous page)

Tvariable B [n,k]

tprod(A,[1,-1],x,[-1]); % same as the matrix-vector product A*x
tprod(A,[1,-1],B,[-1,2]); % same as the matrix-matrix product A*B

tprod(A,[2,1]); % same as the transpose A'

tprod(A,[1,-1]); % same as sum(A,2)

tprod(x,[-1],x,[-1]) % same as the square of the Euclidean norm x'*x
tprod(A,[-1,-2],A,[-1,-2]) % same as the square of the Frobenius norm

Tvariable C [n,n]
tprod(C,[1,1]) % vector with the main diagonal of A
tprod(C,[-1,-1]) % same as trace(A)

4.2 Logical-valued operations

TensCalc uses logical-valued operations mostly to specify optimization constraints.
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Table 2: Logical-valued operations
Usage Description Notes

X==Y

eq(X, Y)

Entry-by-entry equality comparison
of tensors of the same size or of a
scalar with a tensor of arbitrary size.

Unlike MATLAB©’s regular eq(),
expansion upon singleton dimen-
sions is not performed automatically
to match the tensors’ sizes.

X>=Y

ge(X, Y)

Entry-by-entry greater than or equal
to comparison of tensors of the same
size or of a scalar with a tensor of
arbitrary size.

Unlike MATLAB©’s regular ge(),
expansion upon singleton dimen-
sions is not performed automatically
to match the tensors’ sizes.
From the perspective of a con-
strained optimization numerical
solver, due to finite numerical preci-
sion, X>=Y and X>Y represent the
same constraint.

X>Y

gt(X, Y)

Entry-by-entry greater than compar-
ison of tensors of the same size or
of a scalar with a tensor of arbitrary
size.

Unlike MATLAB©’s regular gt(),
expansion upon singleton dimen-
sions is not performed automatically
to match the tensors’ sizes.

X<=Y

le(X, Y)

Entry-by-entry smaller than or equal
to comparison of tensors of the same
size or of a scalar with a tensor of
arbitrary size.

Unlike MATLAB©’s regular le(),
expansion upon singleton dimen-
sions is not performed automatically
to match the tensors’ sizes.
From the perspective of a con-
strained optimization numerical
solver, due to finite numerical preci-
sion, X<=Y and X<Y represent the
same constraint.

X<Y

lt(X, Y)

Entry-by-entry smaller than compar-
ison of tensors of the same size or
of a scalar with a tensor of arbitrary
size.

Unlike MATLAB©’s regular lt(),
expansion upon singleton dimen-
sions is not performed automatically
to match the tensors’ sizes.

all(X, dim)

all(X, 'all')

Checks if the entries of the ten-
sor X are nonzero and performs the
Boolean operation and along the di-
mensions specified in vecdim (1st
form) or along every dimension (2nd
form), producing the logical value
true if all entries are nonzero. The
result is a tensor with the same size
as X, but with the dimensions in
vecdim removed.

Similar syntax to MATLAB©.

any(X, dim)

any(X, 'all')

Checks if the entries of the ten-
sor X are nonzero and performs the
Boolean operation or along the di-
mensions specified in vecdim (1st
form) or along every dimension (2nd
form), producing the logical value
true if at least one entry is nonzero.
The result is a tensor with the same
size as X, but with the dimensions in
vecdim removed.

Similar syntax to MATLAB©.
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4.3 Entry-wise operations

The following functions are applied to every entry of a tensor.
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Table 3: Entry-wise operations
Usage Description Notes

exp(X)
Exponential of tensor entries. Similar syntax to MATLAB©.

log(X)
Natural logarithm of tensor entries. Similar syntax to MATLAB©.

sin(X)
Sine of tensor entries in radians. Similar syntax to MATLAB©.

cos(X)
Cosine of tensor entries in radians. Similar syntax to MATLAB©.

tan(X)
Tangent of tensor entries in radians. Similar syntax to MATLAB©.

atan(X)
Inverse tangent in radians of tensor
entries.

Similar syntax to MATLAB©.

sqr(X)
Square of tensor entries. Similar to X.^2 or X .* X.

cube(X)
Cube of tensor entries. Similar to X.^3 or X .* X .* X.

X.^Y

power(X, Y)

Element-wise X raised to the power
Y.

Similar syntax to MATLAB©, but
TensCalc requires the power Y to be
a regular numeric scalar, not a ma-
trix/vector nor Tcalculus symbolic
expression.

sqrt(X)
Square root of tensor entries. Similar syntax to MATLAB©.

round(X)
Round to nearest integer Similar syntax to MATLAB©, ex-

cept that it does not support a second
argument specifying a desired num-
ber of digits for rounding to a deci-
mal.

ceil(X)
Round to nearest integer towards
+infinity.

Similar syntax to MATLAB©.

floor(X)
Round to nearest integer towards -
infinity.

Similar syntax to MATLAB©.

sign(X)
Signum function applied to the en-
tries X, equal to 1, 0, or -1, depending
on whether the corresponding extry
of X is positive, zero, or negative.

Similar syntax to MATLAB©,

heaviside(X)
Step or heaviside function applied to
the entries X, equal to 1, 0.5, or 0, de-
pending on whether the correspond-
ing entry of X is positive, zero, or
negative.

Similar syntax to MATLAB©.

abs(X)
Absolute value of tensor entries. Similar syntax to MATLAB©.

relu(X)
Rectified linear unit activation func-
tion applied to the entries X.

Similar to max(X,0).

srelu(X)
Smooth rectified linear unit activa-
tion function applied to the entries X.

Similar to log(1+exp(X)) or
x+log(1+exp(-x)).

normpdf(X)
normpdf(X) returns the pdf of the
standard normal distribution evalu-
ated at the entries of X.

Similar syntax to MATLAB©, ex-
cept that it does not support sec-
ond and third arguments specifying
mean and standard deviation differ-
ent than 0 and 1, respectively.
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4.4 Linear algebra

TensCalc supports several basic linear algebra operations, but for operations that require some form of fac-
torization to be performed efficiently, such as:

det() logdet() inv() mldivide() \ traceinv()

TensCalc requires the user to explicitly select the factorization desired:

ldl() lu()

This is accomplished by passing to the function the factorized matrix, as in:

det(lu(A)) det(ldl(A))
logdet(lu(A)) logdet(ldl(A))
inv(lu(A)) inv(ldl(A))
traceinv(lu(A)) traceinv(ldl(A))
mldivide(lu(A),Y) mldivide(ldl(A),Y)
lu(A)\B ldl(A)\B

This syntax works because in TensCalc the factorization functions lu() and ldl() return the whole factor-
ization as a single entity, which can then be passed to any function that take a factorization as input (such as
the functions listed above). This behavior is distinct from regular MATLAB© for which lu() and ldl()
return factorizations through multiple outputs.

TensCalc’s code generation makes sure that redundant computations are not executed, therefore the following
two snippets of code result in the same computation:

Tvariable A [10,10]
Tvariable b [10]
facA=lu(A);
y=det(facA);
x=facA\b;

or:

Tvariable A [10,10]
Tvariable b [10]
y=det(lu(A));
x=lu(A)\b;

Specifically note that, even though lu(A) appears twice in the bottom snippet, the matrix A is only factored
once.
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4.4.1 Which factorization to use?

• The LDL factorization is faster and requires less memory. However, it has some limitations:

– LDL should only be used for symmetric matrices. When used on a matrix that is not symmetric,
all the entries above the main diagonal are ignored.

– TensCalc’s LDL factorization only works for matrices that do not have zeros in the main di-
agonal. Structural zeros in the main diagonal will result in an error at code generation time.
Non-structural zeros (i.e., zeros that cannot be determined at code generation time) will lead to
divisions by zero at run time.

• The LU factorization is a little slower and requires twice as much memory to store both the L and U
factors. However, it can be applied to non-symmetric matrices and matrices with zeros in the main
diagonal.

Both the LU and the LDL factorizations, use “pychologically lower/upper-triangular matrices”, i.e., matrices
that are triangular up to a permutation, with permutations selected to minimize the fill-in for sparse matrices
and reduce computation time (see MATLAB©’s documentation for lu() and ldl() with sparse matrices).
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Table 4: Linear Algebra operations
Usage Description Notes

diag(v, k)
diag(v)
diag(A)

When v is an n-vector, returns
a square matrix with n+abs(k)
rows/columns, with the k-th diago-
nal equal to v. k=0 corresponds to
the main diagonal, k>0 above the
main diagonal and k<0 below.
When k ommited, it is assumed
equal to (main diagonal).
When A is an n-by-n a matrix, re-
turns an n-vector with the main di-
agonal of A.

Similar syntax to MATLAB©, ex-
cept that it does not support a sec-
ond argument specifying a diagonal
other than the main diagonal, when
A is a matrix.

trace(A)
Trace of a matrix, i.e., sum of the di-
agonal elements of A, which is also
the sum of the eigenvalues of A.

Similar syntax to MATLAB©.

A.'

A'

transpose(A)
ctranspose(A)

Transpose of a real-valued matrix. Similar syntax to MATLAB©, ex-
cept that TensCalc does not support
complex-valued variables and there-
fore transpose and ctranspose
return the same values.

lu(A)
LU factorization using “pycholog-
ically lower/upper-triangular matri-
ces”, i.e., matrices that are triangu-
lar up to a permutation, with per-
mutations selected to minimize the
fill-in for sparse matrices and re-
duce computation time (see MAT-
LAB©’s documentation for lu with
sparse matrices).

The output of this function includes
the whole factorization as a single
entity, in a format that can be passed
to functions that require factoriza-
tions (such as mldivide, inv, det,
logdet, traceinv), but should not be
used by functions that are not expect-
ing a factorized matrix as an input.

ldl(A)
LDL factorization using “pychologi-
cally lower-triangular matrices”, i.e.,
matrices that are triangular up to a
permutation, with permutations se-
lected to minimize the fill-in for
sparse matrices and reduce compu-
tation time (see MATLAB©’s doc-
umentation for lu with sparse matri-
ces).
All entries of A above the main diag-
onal are ignored and assumed to be
equal to the one below the main di-
agonal, without performing any test
regarding of whether or not this is
true.

The output of this function includes
the whole factorization as a single
entity, in a format that can be passed
to functions that require factoriza-
tions (such as mldivide, inv, det,
logdet, traceinv), but should not be
used by functions that are not expect-
ing a factorized matrix as an input.

lu(A) \\ B

mldivide(lu(A), B)
ldl(A) \\ B

mldivide(ldl(A), B)

Left matrix division, which is the
solution to the system of equa-
tions A*X=B where A must be a
nonsingular square matrix (tensor
with 2 dimensions) and B a tensor
such that size(A,1)==size(A,
2)==size(B,1).

MATLAB© allows for non-square
and possibly singular matrices A, in
which case the least-squares solu-
tion to A*X=B is returned. Currently,
TensCalc requires A to be square and
nonsingular.
When an the LDL factorization is
used, all entries of A above the main
diagonal are ignored and assumed
to be equal to the one below the
main diagonal, without performing
any test regarding of whether or not
this is true.

inv(lu(A))
inv(ldl(A))

Inverse of a square matrix. Similar syntax to MATLAB©.
When an the LDL factorization is
used, all entries of A above the main
diagonal are ignored and assumed
to be equal to the one below the
main diagonal, without performing
any test regarding of whether or not
this is true.

det(lu(A))
det(ldl(A))

Determinant of a square matrix. Similar syntax to MATLAB©.
When an the LDL factorization is
used, all entries of A above the main
diagonal are ignored and assumed
to be equal to the one below the
main diagonal, without performing
any test regarding of whether or not
this is true.

logdet(lu(A))
logdet(ldl(A))

Natural logarithm of the determinant
of a square matrix with positive de-
terminant.

Results in the same value
log(det(A)), but in the con-
text of optimizations, it is more
efficient to use ``logdet(A)`` because
the latter simplifies the computation
of the derivative.
When an the LDL factorization is
used, all entries of A above the main
diagonal are ignored and assumed
to be equal to the one below the
main diagonal, without performing
any test regarding of whether or not
this is true.
TensCalc assumes that
det(A)>0 and actually returns
log(abs(det(A))) but ignores
the abs() operation when comput-
ing derivatives of logdet

traceinv(lu(A))
traceinv(ldl(A))

Natural logarithm of the determinant
of a square matrix.

It results in the same value
trace(inv(A)), but in the context
of optimizations, it is more efficient
to use ``traceinv(A)`` because the
latter simplifies the computation of
the derivative.
When an the LDL factorization is
used, all entries of A above the main
diagonal are ignored and assumed
to be equal to the one below the
main diagonal, without performing
any test regarding of whether or not
this is true.

ldl_l(ldl(A))
ldl_d(ldl(A))

Returns the lower-triangular matrix
or the diagonal matrix in an LDL
factorization.
The LDL factorization uses “pycho-
logically lower-triangular matrices”,
i.e., matrices that are triangular up
to a permutation, with permutations
selected to minimize the fill-in for
sparse matrices and reduce compu-
tation time (see MATLAB©’s doc-
umentation for lu with sparse matri-
ces).

This function can only be applied
to a matrix that has been factorized
with ldl().
When an the LDL factorization is
used, all entries of A above the main
diagonal are ignored and assumed
to be equal to the one below the
main diagonal, without performing
any test regarding of whether or not
this is true.

lu_l(A)
lu_u(A)
lu_d(A)

Returns the lower-triangular ma-
trix in an LU factorization (which
is guaranteed to be nonsingular),
the upper-triangular matrix, or just
the main diagonal of the upper-
triangular matrix (as a vector).
The LU factorization uses “pycho-
logically upper/lower-triangular ma-
trices”, i.e., matrices that are trian-
gular up to a permutation, with per-
mutations selected to minimize the
fill-in for sparse matrices and re-
duce computation time (see MAT-
LAB©’s documentation for lu with
sparse matrices).

These functions can only be applied
to a matrix that has been factorized
with lu().

norm(x)
norm(x, 2)

2-norm of a scalar or a vector Similar syntax to MATLAB©, but
restricted to vectors.
The 2-norm should be avoided in
optimization criteria because it is
not differentiable at the origin. See
Avoiding lack of smoothness on how
to overcome this issue.

norm(x, 1)
1-norm of a scalar, a vector, or ma-
trix

The 1-norm should be avoided in op-
timization criteria because it is not
differentiable at points where the op-
timum often lies. See Avoiding lack
of smoothness on how to overcome
this issue.

norm(x, inf)
infinity norm of a scalar, a vector, or
matrix

The infinity norm should be avoided
in optimization criteria because it is
not differentiable at points where the
optimum often lies. See Avoiding
lack of smoothness on how to over-
come this issue.

norm2(x)
norm2(x, S)

norm2(x) returns the sum of the
square of all entries of the tensor x,
which for vectors and matrices cor-
responds to the square of the Eu-
clidean and Frobenius norm of x.
norm2(x,S) returns the value of the
quadratic form <x,Sx>. This form
is only applicable when x is a vec-
tor (tensor with 1 dimension) and S a
square matrix (tensor with 2 dimen-
sions).

norm2(x) is similar to norm(x,
2)^2 and also to sum(x.^2,
'all'), but computes derivatives
more efficiently.

norm1(x)
returns the sum of the absolute value
of all entries of the tensor x, which
for vectors corresponds to the 1-
norm of x.

norm1(x) is similar to
sum(abs(x),'all').
norm1() should be avoided in op-
timization criteria because it is not
differentiable at points where the op-
timum often lies. See Avoiding lack
of smoothness on how to overcome
this issue.

norminf(x)
returns the largest absolute value of
all entries of the tensor x, which for
vectors corresponds to the infinity-
norm of x.

norminf(x) is similar to
max(abs(x),[],'all').
norminf() should be avoided in op-
timization criteria because it is not
differentiable at points where the op-
timum often lies. See Avoiding lack
of smoothness on how to overcome
this issue.
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Warning: Calling \, mldivide(), inv(), det(), logdet(), traceinv(), ldl_d(), or lu_d() with
a matrix that has not been factorize will lead to syntax errors, often not easy to directly relate to the
missing factorization.

4.4.2 Avoiding lack of smoothness

In general norm are not smooth:

• The 2-norm is not smooth at the origin because of the sqrt()

• The 1-norm is not smooth at any point where one coordinate is equal to zero because of the abs()

• The infinity-norm is not smooth at any point where two or more entries have the equal largest absolute
values because of the max()

For optimizations, this is particular problematic if the optimum occurs precisely at points where the norm is
not differentiable, which is almost always the case for the 1-norm and the infinity norm.

However, it is generally possible to avoid this problem by introducing auxiliary slack variables and constraints
that make the optimization smooth, without losing convexity.

• A minimization involving a 2-norm of the form:

min
{︁

norm(𝑥, 2) + 𝑓(𝑥) : 𝑥 ∈ R𝑛, 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0
}︁

can be reformulated as

min
{︁
𝑣 + 𝑓(𝑥) : 𝑣 ∈ R, 𝑥 ∈ R𝑛, 𝑣 > 0, 𝑣2 ≥ norm2(𝑥), 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0

}︁
• A minimization involving a 1-norm of the form:

min
{︁

norm(𝑥, 1) + 𝑓(𝑥) : 𝑥 ∈ R𝑛, 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0
}︁

can be reformulated as

min
{︁

sum(𝑣) + 𝑓(𝑥) : 𝑥, 𝑣 ∈ R𝑛,−𝑣 ≤ 𝑥 ≤ 𝑣, 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0
}︁

• A minimization involving an infinity-norm of the form:

min
{︁

norm(𝑥, inf) + 𝑓(𝑥) : 𝑥 ∈ R𝑛, 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0
}︁

can be reformulated as

min
{︁
𝑣 + 𝑓(𝑥) : 𝑣 ∈ R, 𝑥 ∈ R𝑛,−𝑣 ≤ 𝑥 ≤ 𝑣, 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0

}︁
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4.5 Calculus - differentiation

The following function computes the partial derivatives of a symbolic expression with respect to the entries
of a tensor-valued symbolic variable:

gradient(f, x)

Parameters

• f (Tcalculus symbolic tensor) – tensor-valued expression to be differentiated

• x (Tcalculus tensor-values symbolic variable) – variable (created with
Tvariable()) with respect to which the derivatives will be taken

When

• f is a tensor with size [n1,n2,...,nN]

• x is a tensor-valued variable (created with Tvariable()) with size [m1,m2,...,mM]

then g=gradient(f,x) results in a tensor with size [n1,n2,...,nN,m1,m2,...,mM] with

𝑔(𝑖1, 𝑖2, ..., 𝑖𝑁, 𝑗1, 𝑗2, ..., 𝑗𝑀) =
𝑑 𝑓(𝑖1, 𝑖2, ..., 𝑖𝑁)

𝑑𝑥(𝑗1, 𝑗2, ..., 𝑗𝑀)

For example, if f is a scalar (with size []) and x an n-vector (with size [n]), then g=gradient(f,x) results
in an n-vector (with size [n]) with the usual gradient:

𝑔(𝑖) =
𝑑 𝑓

𝑑𝑥(𝑖)

If we then compute h=gradient(g,x), we obtain an n-by-n matrix (with size [n,n]) with the Hessian
matrix:

ℎ(𝑖, 𝑗) =
𝑑 𝑔(𝑖)

𝑑𝑥(𝑗)
=

𝑑2 𝑓

𝑑𝑥(𝑖) 𝑑𝑥(𝑗)

The computation of first and second derivatives can be streamlined using the following function:

hessian(f, x[, y ])
Parameters

• f (Tcalculus symbolic tensor) – tensor-valued expression to be differentiated

• x (Tcalculus tensor-values symbolic variable) – variable (created with
Tvariable()) with respect to which the 1st derivatives will be taken

• y (Tcalculus tensor-values symbolic variable) – variable (created with
Tvariable()) with respect to which the 2nd derivatives will be taken (optinal,
when omitted the 2nd derivatives will also be taken with respect to x)

When

• f is a tensor with size [n1,n2,...,nN]

• x a tensor-valued variable (created with Tvariable()) with size [m1,m2,...,mM]
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• y a tensor-valued variable (created with Tvariable()) with size [l1,l2,...,lL]

then [h,g]=hessian(f,x,y) results in

• a tensor g with size [n1,n2,...,nN,m1,m2,...,mM] with

𝑔(𝑖1, 𝑖2, ..., 𝑖𝑁, 𝑗1, 𝑗2, ..., 𝑗𝑀) =
𝑑 𝑓(𝑖1, 𝑖2, ..., 𝑖𝑁)

𝑑𝑥(𝑗1, 𝑗2, ..., 𝑗𝑀)

• a tensor h with size [n1,n2,...,nN,m1,m2,...,mM,l1,l2,...,lL] with

ℎ(𝑖1, 𝑖2, ..., 𝑖𝑁, 𝑗1, 𝑗2, ..., 𝑗𝑀, 𝑘1, 𝑘2, ..., 𝑘𝐿) =
𝑑 𝑓(𝑖1, 𝑖2, ..., 𝑖𝑁)

𝑑𝑥(𝑗1, 𝑗2, ..., 𝑗𝑀)𝑑𝑦(𝑗1, 𝑗2, ..., 𝑗𝑀)

In practice, [h,g]=hessian(f,x,y) is equivalent to:

g=gradient(f,x);
h=gradient(g,y);
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FIVE

CONSTRAINED OPTIMIZATION

TensCalc can be used to generate code to solve optimizations or Nash equilibria. All solvers use a primal-dual
interior-point method and share several common parameters.

5.1 Types of code

C code

C code is self-contained and library free (aside from the C standard library). The C code is
encapsulated into a dynamic library that can be linked to MATLAB© or used independently.

This type of code is extremely efficient and fast for small to medium-size problems; typically up
to a few thousands of variables and constraints. In this domain C code is typically 10-100 times
faster.

In addition to the C code, a MATLAB© class is also generated to set parameter values and call
the solver from within MATLAB©.

The scripts that generate C code start with the prefix cmex2.

MATLAB©

MATLAB© code is integrated into a MATLAB© class that is used to set parameter values and
call the solver.

The scripts that generate MATLAB© code start with the prefix class2.

Note: The MATLAB© classes that call the C and the MATLAB© solvers appear indistinguishable to the
user, aside from the speed of execution.
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5.2 Minimization

TensCalc can generate optimized code to solve constrained optimizations of the form

𝑥* ∈ argmin
𝑥

{︁
𝑓(𝑥) : 𝐹 (𝑥) ≥ 0, 𝐺(𝑥) = 0

}︁
where the variable x can include multiple tensors and the equality and inequality constraints can be expressed
by equalities and inequalities involving multiple tensors.

The following two scripts are used to generate code to solve this type of constrained minimization

cmex2optimizeCS(parameter1, value1, parameter2, values2, ...)

class2optimizeCS(parameter1, value1, parameter2, values2, ...)

Parameters

• parameter1 (string) – parameter to set

• value1 (type depends on the parameter) – parameter to set

• parameter2 (string) – parameter to set

• value2 (type depends on the parameter) – parameter to set, . . .

Returns
name of the MATLAB© class created

Return type
string

Both scripts take several parameters (many of them optional) in the form of pairs, consisting of a parameter
name and its value, as in:

classname=cmex2optimizeCS('classname','myoptimization', ...
'objective',norm2(x-y), ...
'optimizationVariables', { x, y }, ...
'constraints', { x>=-1, x<=1, y>=10 }, ...
'outputExpressions', { x, y });

Alternative, parameters to the scripts can be passed using a structure, as in:

opt.classname='myoptimization';
opt.objective=norm2(x-y);
opt.optimizationVariables={ x, y };
opt.constraints={ x>=-1, x<=1, y>=10 };
opt.outputExpressions={ x, y };
classname=cmex2optimizeCS(opt);

Note: This type of parameter passing and validation is enabled by the FunParTools toolbox, which also
enables several other advanced features. See Pedigrees.
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The function cmex2optimizeCS() generates C code, whereas class2optimizeCS() generates MAT-
LAB© code, but both functions take the same set of parameters and generate MATLAB© classes that are
indistinguishable to the user.

The following table list the most commonly used parameters for cmex2optimizeCS() and
class2optimizeCS(). For the full set of parameters, use:

cmex2optimizeCS help
class2optimizeCS help
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Table 1: Selected parameters for cmex2optimizeCS() and
class2optimizeCS(). For the full set of parameters use
cmex2optimizeCS help or class2optimizeCS help

Parameter Allowed values Description
‘optimizationVa-
riables’

cell-array of
Tcalculus ten-
sor variables
created using
Tvariable()

Variables to be optimized.

‘objective’ scalar Tcalculus
tensor

Criterion to optimize.

‘constraints’ cell-array of
Tcalculus
tensors, each
involving one
of the following
operations ==, >=,
<=, >, <.

Optimization constraints.

Warning:
For con-
straint
satisfaction,
there is no
difference
between <=
and < or
between >=
and >.

‘outputExpres-
sions’

cell-array of
Tcalculus
tensors

Expressions (typically involving the optimization variables)
that the solver should return upon termination.

Warning:
MAT-
LAB©
does not
support
sparse
arrays
with more
than 2 di-
mensions,
therefore to
include in
outputExpressions
tensors with
more than 2
dimensions
one must
make them
full(), as
in:
cmex2optimizeCS(
→˓'classname
→˓',
→˓'myoptimization
→˓', ...

␣
→˓

→˓'objective
→˓',
→˓norm2(x-
→˓x0), ..
→˓.

␣
→˓

→˓'optimizationVariables
→˓', { x␣
→˓}, ...

␣
→˓

→˓'parameters
→˓', {x0,
→˓ ...

␣
→˓

→˓'constraints
→˓', { x>
→˓=-1, x
→˓<=1 },␣
→˓...

␣
→˓

→˓'outputExpressions
→˓', {␣
→˓full(x)␣
→˓});

See Special variables to include in 'outputExpressions'.
‘parameters’ cell-array of

Tcalculus ten-
sor variables
created using
Tvariable()

Parameters that the optimization criterion and constraints may
depends upon; to be provided to the solver, but not optimized.

‘sensitivityVari-
ables’

cell-array of
Tcalculus ten-
sor variables
created using
Tvariable()

Optimization variables with respect to which we want to com-
pute cost sensitivity.
See Sensitivity variables.

‘classname’ string Name of the class to be created. A MATLAB© class will be
created with this name plus a .m extension.
See Solver Class.

Warning:
This pa-
rameter
should
not be
used with
pedigrees
are en-
abled using
'pedigreeClass'.
See Pedi-
grees

‘folder’ string Path to the folder where the class and cmex files will be cre-
ated. The folder will be created if it does not exist and it will
be added to the begining of the path if not there already.

‘simulinkLibrary’ string Name of a simulink library to be created with Simulink blocks
that can be used to call the different solver functions. The
blocks are created with direct feedthrough.
No library and no simulink blocks are created if simulinkLi-
brary is an empty string.

‘gradTolerance’ positive number,
default 1e-4

Maximum norm for the gradient below which the first order
optimality conditions assumed to by met.

‘equalTolerance’ positive number,
default 1e-4

Maximum norm for the vector of equality constraints below
which the equalities are assumed to hold.

‘desiredDuality-
Gap’

positive number,
default 1e-5

Value for the duality gap that triggers the end of the constrained
optimization. The overall optimization terminates at the end of
the first Newton step for which the duality gap becomes smaller
than this value.

‘solverVerbose-
Level’

integer Level of verbose for the solver outputs:
• 0 - the solver does not produce any output and does not

report timing information
• 1 - the solver does not produce any output but reports

timing information
• 2 - the solver only report a summary of the solution sta-

tus when the optimization terminates
• 3 - the solver reports a summary of the solution status at

each iteration
• >3 - the solver produces several (somewhat unreadable)

outputs at each iteration step

‘add-
Eye2Hessian’

nonnegative real,
default 1e-9

Add to the Hessian matrix appropriate identity matrices scaled
by this constant.
A larger value for addEye2Hessian has two main effects:

1) Improves the numerical conditioning of the system of
equations that finds the Newton search direction.

2) Moves the search direction towards the gradient descent
of the Lagragian (and away from the Newton direction).

Both effects improve the robustness of the solver, but this is
typically achieved at the expense of slower convergence.
For convex problems, one typically chooses addEye2Hessian
equal to the square root of the machine precision.
For non-convex problems, one can try to increase this parame-
ter when the Newton direction actually causes and increase of
the Lagragian.

‘muFactorAg-
gressive’

real in the inter-
val (0,1), default
.3333

Multiplicative factor used to update the barrier parameter mu.
This value is used when there is good progress along the New-
ton direction. Nice convex problems can take as low as 1/100,
but poorly conditioned problems may require as high as 1/3.
This parameter is only used when skipAffine=true.

‘muFactorCon-
servative’

real in the interval
(0,1), default .75

Multiplicative factor used to update the barrier parameter mu
(must be smaller than 1). This value is used when there is poor
or no progress along the Newton direction. A value not much
smaller than one is preferable.

‘skipAffine’ [false, true],
default true

When false the barrier parameter mu is updated based on how
much progress can be achieved in the search direction obtained
with mu=0. This is known as the ‘affine search direction step’.
This step (obtained by setting to skipAffine=false) can sig-
nificantly speed up convergence by rapidly decreasing the bar-
rier parameter. However, it can be fragile for tough non-convex
problems.

‘delta’ [2,3], default 3 Delta parameter used to determine mu based on the affine
search direction step: Set delta=3 for well behaved problems
(for an aggressive convergence) and delta=2 in poorly condi-
tioned problems (for a more robust behavior). This parameter
is only used when skipAffine=false.

‘alphaMin’ real in the interval
(0,1], default 1e-7

Minimum value for the scalar gain in Newton’s method line
search, below which a search direction is declared to have
failed.

‘alphaMax’ real in the interval
(0,1], default 1

Maximum value for the scalar gain in Newton’s method line
search. Should only be set lower than 1 for very poorly scaled
problems.

‘useLDL’ [false, true],
default true

When true the search directions are computed using an LDL
instead of an LU factorization.
In general, the LDL factorization leads to faster code. How-
ever, the current implementation is restricted to a pure diago-
nal matrix (no 2x2 blocks in the D factor) so it may fail with
the message ‘ldl needs pivoting’. If this happens either set
useLDL=false or use a nonzero value for addEye2Hessian.

‘smallerNewton-
Matrix’

[false, true],
default false

When true the matrix that needs to be inverted to compute
a Newton step is reduced by first eliminating the dual vari-
ables associated with inequality constraints. However, often
the smaller matrix is not as sparse so the computation may ac-
tually increase.

‘compilerOpti-
mization’

['-O0', '-O1',
'-O2', '-O3',
'-Ofast’ ],
default '-O0'

Optimization parameters passed to the C compiler.
-O1

often generates the fastest code, whereas
-O0

compiles the fastest
This parameter is only used for C-code solvers.

‘minInstruc-
tions4loop’

integer, default 50 Minimum number of similar instruction that will be execute
as part of a for(;;) loop, rather than being executed as in-
dependent C commands. When equal to inf, instructions will
never be grouped into foor loops.
This parameter is only used for C-code solvers.

‘maxInstruction-
sPerFunction’

integer, default
100

Maximum number of instructions to be included into a single
function. When equal to inf, there is no limit on the size of a
single function.
Large values of maxInstructionsPerFunction and there-
fore large functions give more opportunities for compiler op-
timization, but can resul in very slow compilation (especially
with compiler optimization turned on).
This parameter is only used for C-code solvers.

‘absolutePath’ [false, true],
default true

When true the the cmex functions use an absolute path to
open the dynamic library, which means that the dynamic li-
brary cannot be moved away from the folder where it was cre-
ated.
When false no path information about the dynamic library
is included in the cmex function, which must then rely on the
OS-specific method used to find dynamic libraries. See docu-
mentation of ‘dlopen’ for linux and OSX or ‘LoadLibrary’ for
Microsoft Windows.
This parameter is only used for C-code solvers.

‘pedigreeClass’ string When nonempty, the function outputs are saved to a set of files.
All files in the set will be characterized by a ‘pedigree’, which
decribes all the input parameters that were used in the script.
This variable contains the name of the file class and may in-
clude a path.
This is supported by the FunParTools toolbox. See help
createPedigree.
See Pedigrees

‘executeScript’ ['yes', 'no',
'asneeded'],
default 'yes'

Determines whether or not the body of the function should be
executed:

yes
the function body should always be exe-
cuted.

no
the function body should never be executed
and therefore the function returns after pro-
cessing all the input parameters.

asneeded
if a pedigree file exists that match all the in-
put parameters (as well as all the parame-
ters of all ‘upstream’ functions) the function
body is not executed, otherwise it is execute.

See Pedigrees.
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Warning: cmex2optimizeCS() and class2optimizeCS() only solve for first-order optimality con-
ditions so they may produce either a minimium or a maximum (or a saddle-point). It is up to the user to
restrict the search domain to make sure that the desired optimum was found, or test if that was the case
after the fact. The Hess_ output can help in that regard.

5.2.1 Special variables to include in 'outputExpressions'

The following Tcalculus variables are assigned special values and can be using in outputExpressions:

lambda1_, lambda2_, . . .
Lagrangian multipliers associated with the inequalities constraints (in the order that they
appear and with the same size as the corresponding constraints)

nu1_, nu2_, . . .
Lagrangian multipliers associated with the equality constraints (in the order that they ap-
pear and with the same size as the corresponding constraints)

Hess_
Hessian matrix used by the (last) Newton step to update the primal variables (not including
addEye2Hessian).

dHess_
D factor in the LDL factorization of the Hessian matrix used by the (last) Newton step to
update the primal variables (including addEye2Hessian, unlike Hess_).

Grad_
gradient of Lagrangian at the (last) Newton step.

mu_
barrier parameter at the (last) Newton step.

u_
vector stacked with all primal variables at the (last) Newton step.

F_
vector stacked with all equalities at the (last) Newton step.

G_
vector stacked with all inequalities at the (last) Newton step.

nu_
vector stacked with all dual equality variables at the (last) Newton step.

lambda_
vector stacked with all dual inequality variables at the (last) Newton step.

Warning: To be able to include these variables as input parameters, they have to be previously created
using Tvariable() with the appropriate sizes. Eventually, their values will be overridden by the solver
to reflect the values listed above.
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5.2.2 Sensitivity variables

Warning: This section of the documentation is still incomplete.

Tvars2optimizeCS(parameter1, value1, parameter2, values2, ...)

Table 2: Selected parameters for Tvars2optimizeCS(). For the
full set of parameters use Tvars2optimizeCS help

Parameter Allowed values Description
‘optimizationVa-
riables’

cell-array of
Tcalculus ten-
sor variables
created using
Tvariable()

Variables to be optimized.

‘sensitivityVari-
ables’

cell-array of
Tcalculus ten-
sor variables
created using
Tvariable()

Optimization variables with respect to which we want to com-
pute cost sensitivity.

‘objective’ scalar Tcalculus
tensor

Criterion to optimize.

‘constraints’ cell-array of
Tcalculus
tensors, each
involving one
of the following
operations ==, >=,
<=, >, <

Optimization constraints.

‘add-
Eye2Hessian’

nonnegative real,
default 1e-9

Add to the Hessian matrix appropriate identity matrices scaled
by this constant.
A larger value for addEye2Hessian has two main effects:

‘smallerNewton-
Matrix’

[false, true],
default false

When true the matrix that needs to be inverted to compute
a Newton step is reduced by first eliminating the dual vari-
ables associated with inequality constraints. However, often
the smaller matrix is not as sparse so the computation may ac-
tually increase.
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5.2.3 Solver Class

The MATLAB© class created to set parameter values and call the solver from within MATLAB© has the
following methods:

obj=classname()

creates class and, for C code, loads the dynamic library containing the C code

delete(obj)
deletes the class and, for C code, unloads the dynamic library

setP_{parameter}(obj,value)

sets the value of one of the parameters

setV_{variable}(obj,value)

sets the value of one of the optimization variables

[y1,y2, ...]=getOutputs(obj)

gets the values of the outputExpressions

[status,iter,time]=solve(obj,mu0,int32(maxIter),int32(saveIter))

Parameters

• mu0 – initial value for the barrier variable

• maxIter – maximum number of Newton iterations

• saveIter – iteration # when to save the “hessian” matrix (for subsequent pivot-
ing/permutations/scaling optimization) only saves when allowSave is true.

– When saveIter=0, the hessian matrix is saved at the last iteration; and

– When saveIter<0, the hessian matrix is not saved.

The “hessian” matrix will be saved regardless of the value of saveIter, when the
solver exists with status=4.

Returns status
solver exist status

• 0 = success

• >0 = solver terminated unexpectedly

• nonzero status indicates the reason for termination in a binary format:

– bit 0 = 1 - (primal) variables violate constraints

– bit 1 = 1 - dual variables are negative

– bit 2 = 1 - failed to invert hessian

– bit 3 = 1 - maximum # of iterations reached

when the solver exists because the maximum # of iterations was reached (bit 3 =
1), the remaining bits provide information about the solution returned
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– bit 4 = 1 - gradient larger then gradTolerance

– bit 5 = 1 - equality constraints violate equalTolerance

– bit 6 = 1 - duality gap larger than desiredDualityGap

– bit 7 = 1 - barrier variable larger than minimum value

– bit 8 = 1 - scalar gain alpha in Newton direction smaller than alphaMin

– bit 9 = 1 - scalar gain alpha in Newton direction smaller than .1

– bit 10 = 1 - scalar gain alpha in Newton direction smaller than .5

Returns iter
number of iterations

Returns time
solver’s compute time (in secs).

5.2.4 Pedigrees

Pedigrees can save a lot of time for functions that take some time to execute, like the TensCalc’s functions
that generate code:

|cmex2optimizeCS| |cmex2equilibriumLatentCS| |cmex2compute|
|class2optimizeCS| |class2equilibriumLatentCS| |class2compute|

Essentially, every time a function is executed with pedigrees enables, all its inputs are saved in a pedigree file
and the function’s outputs are also saved. In case the function produces output files (e.g., C or MATLAB©
code), the files are stored with unique names for possible subsequent reuse. When the function is called
again, it checks whether it has been previously called with the same exact inputs:

• If it has, then the previously saved outputs can be retrieved from the appropriate files and the function
does not need to be recomputed.

• Otherwise, the function is executed and an additional pedigree and the associated outputs are saved for
potential subsequent use.

Pedigrees are enables by specifying the input parameter 'pedigreeClass', which is the common prefix
used for the names of all the files used to save the pedigree and outputs of the function. Each time the
function is called, this prefix is augmented with a unique suffix that reflects the date and time the function
was called. To be precise, the first date/time the function was called with that particular set of inputs. Any
subsequent calls with the same exact inputs reuse the previously saved pedigree.

The following call to cmex2optimizeCS() enables the used of pedigrees:

classname=cmex2optimizeCS('pedigreeClass','tmp_myopt', ...
'executeScript','asneeded',...
'objective',norm2(x-y), ...
'optimizationVariables', { x, y }, ...
'constraints', { x>=-1, x<=1, y>=10 }, ...
'outputExpressions', { x, y });
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and an instance of the solver generated by this call to cmex2optimizeCS() can be created using:

obj=feval(classname);

In the call to cmex2optimizeCS(), the parameter pair:
'pedigreeClass','tmp_myopt'

specifies that pedigrees should be enabled and that all pedigree files should start with the prefix tmp_myopt.
The cmex2optimizeCS() parameter pair:

'executeScript','asneeded'

further specifies that the cmex2optimizeCS() function should only be executed if “it is needed”. Specif-
ically, if cmex2optimizeCS() has previously been called with the same exact set of inputs, then
cmex2optimizeCS() should not be executed and, instead, the previously generated code should be reused.
Alternatively,

'executeScript','yes'

would specify that the code should be regenerated again even it cmex2optimizeCS() has been called before
with the same exact inputs.

Warning: When pedigrees are enabled through 'pedigreeClass' one should not specify the class
name using the parameter 'classname'.

The actual classname will be chosen so that it is unique for a specific set of inputs and returned to the user
as the output. In this way, regenerating code with a new set of inputs will not overwrite existing code.

Note: Every time a function that uses pedigrees is called with a different set of inputs, a new pedigree is
created for potential subsequent reuse. Because of this, one can easily get 100s of pedigree files. The good
news is that pedigree files can be safely removed, because they are simply used to save time.

It is a good practice to name all your pedigree files with a unique prefix that marks the file as “safe-to-remove”.
In all TensCalc examples, we use the prefix 'tmp' to mark these files, which means that all files started with
the 3 letters 'tmp' are safe to remove.

Note: Pedigrees are stored both as a .mat file (for fast retrieval) as well as a human-readable .html file. In
general, there is little reason to dig into pedigree files, but all the inputs are there in case one is curious about
previous calls to code-generation functions.

Pedigrees are enabled by the FunParTools toolbox and are available to any function that uses this toolbox to
process input and output parameters.
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5.3 Nash equilibrium

TensCalc can generate optimized code to compute Nash equilibrium

𝑢* ∈ argmin
𝑢

{︁
𝑓(𝑢, 𝑑*, 𝑥) : 𝐹 (𝑢, 𝑑*, 𝑥) ≥ 0, 𝐺(𝑢, 𝑑*, 𝑥) = 0

}︁
𝑑* ∈ argmin

𝑑

{︁
𝑔(𝑢*, 𝑑, 𝑥) : 𝐹 (𝑢*, 𝑑, 𝑥) ≥ 0, 𝐺(𝑢*, 𝑑, 𝑥) = 0

}︁
where the variables u, d, x can include multiple tensors and the equality and inequality constraints can be
expressed by equalities and inequalities involving multiple tensors.

The latent variable x that appears in both minimizations, must be fully determined by the equality constraints
and is thus not really a free optimization variable.

The following two scripts are used to generate code to compute this type of Nash equilibrium

cmex2equilibriumLatentCS(parameter1, value1, parameter2, values2, ...)

class2equilibriumLatentCS(parameter1, value1, parameter2, values2, ...)

Parameters

• parameter1 (string) – parameter to set

• value1 (type depends on the parameter) – parameter to set

• parameter2 (string) – parameter to set

• value2 (type depends on the parameter) – parameter to set, . . .

Returns
name of the MATLAB© class created

Return type
string

The function cmex2optimizeCS() generates C code, whereas class2optimizeCS() generates MAT-
LAB© code, but both functions take the same set of parameters and generate MATLAB© classes that are
indistinguishable to the user.
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Table 3: Selected parameters for C and
class2equilibriumLatentCS(). For the full set of
parameters use class2equilibriumLatentCS help or
class2equilibriumLatentCS help

Parameter Allowed values Description
‘P1optimizationVariables’
‘P2optimizationVariables’

cell-array of Tcalculus tensor vari-
ables created using Tvariable()

Variables to be optimized by player 1
and player 2

‘P1objective’
‘P2objective’

scalar Tcalculus tensor Criteria to optimize for player 1 and
player 2

‘P1constraints’
‘P2constraints’

cell-array of Tcalculus tensors,
each involving one of the following
operations ==, >=, <=, >, <

Optimization constraints for player 1
and player 2

Warning:
For
con-
straint
sat-
is-
fac-
tion,
there
is
no
dif-
fer-
ence
be-
tween
<=
and
<
or
be-
tween
>=
and
>.

‘latentVariables’ cell-array of Tcalculus tensor vari-
ables created using Tvariable()

Latent optimization variables com-
mon to both players

‘latentConstraints’ cell-array of Tcalculus tensors,
each involving one of the following
operations ==, >=, <=, >, <

Optimizations constraints common to
both players that implicitely define the
latext variables.

‘outputExpressions’ cell-array of Tcalculus tensors Expressions (typically involving the
optimization variables) that the solver
should return upon termination.
See Special variables to include in
'outputExpressions' for Nash solver:5.3. Nash equilibrium 39
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5.3.1 Special variables to include in 'outputExpressions' for Nash solver

The following Tcalculus variables are assigned special values and can be using in outputExpressions:

P1lambda1_, P1lambda2_, . . . , P2lambda1_, P2lambda2_, . . .
Lagrangian multipliers associated with the inequalities constraints for player 1 and 2 (in
the order that they appear and with the same size as the corresponding constraints)

P1nu1_, P1nu2_, . . . , P2nu1_, P2nu2_, . . . P1xnu1_, P1xnu2_, . . . , P2xnu1_, P2xnu2_, . . .
Lagrangian multipliers associated with the equality constraints player 1 and 2 (in the order
that they appear and with the same size as the corresponding constraints). The P1x and
P2x variables correspond to the latentConstraints.

Hess_
Hessian matrix used by the (last) Newton step to update the primal variables (not including
addEye2Hessian).

Warning: To be able to include these variables as input parameters, they have to be previously created
using Tvariable() with the appropriate sizes. Eventually, their values will be overridden by the solver
to reflect the values listed above.
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CHAPTER

SIX

CODE GENERATION FOR COMPUTATIONS

Warning: This section of the documentation is still incomplete.

Computation trees

Sets of computations organized as dependency graphs, with multiple roots (input variables) and
leaves (output expressions).

6.1 Defining a computation

class csparse

cs=csparse()

Creates an empty computation tree

Returns
empty csparse object

declareSet(cs, destination, functionName)
Adds an input variable to the tree

Parameters

• cs – csparse object

• destination – Tcalculus tensor variable created using Tvariable()

• functionname (string) – name of the function to be created

declareGet(cs, sources, functionName)
Adds output expressions to the tree

Parameters

• cs – csparse object

• sources – cell array of Tcalculus tensor-valued expressions

• functionname (string) – name of the function to be created
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declareCopy(cs, destinations, sources, functionName)
Sets the value of input variables, based on the value of output expressions

Parameters

• cs – csparse object

• sources – cell array of Tcalculus tensor-valued expressions

• destinations – cell array of Tcalculus tensor variables created using
Tvariable()

• functionname (string) – name of the function to be created

6.2 Code generation

cmex2compute(parameter1, value1, parameter2, values2, ...)

class2compute(parameter1, value1, parameter2, values2, ...)
Generate code to set values of input variables, get values of output expressions, and copy output ex-
pressions to input variables.

Parameters

• parameter1 (string) – parameter to set

• parameter2 (string) – parameter to set, . . .

Returns
name of the MATLAB© class created

Return type
string

• genindex

• search
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le() (built-in function), 19
length() (built-in function), 11
log() (built-in function), 21
logdet() (built-in function), 24
lt() (built-in function), 19
lu() (built-in function), 24
lu_d() (built-in function), 24
lu_l() (built-in function), 24
lu_u() (built-in function), 24

M
max() (built-in function), 16
min() (built-in function), 16
minus() (built-in function), 16
mldivide() (built-in function), 24
mtimes() (built-in function), 16
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N
ndims() (built-in function), 11
norm() (built-in function), 24
norm1() (built-in function), 24
norm2() (built-in function), 24
norminf() (built-in function), 24
normpdf() (built-in function), 21
numel() (built-in function), 11

P
plus() (built-in function), 16
power() (built-in function), 21

R
rdivide() (built-in function), 16
relu() (built-in function), 21
repmat() (built-in function), 12
reshape() (built-in function), 12
round() (built-in function), 21

S
sign() (built-in function), 21
sin() (built-in function), 21
size() (built-in function), 11
sqr() (built-in function), 21
sqrt() (built-in function), 21
srelu() (built-in function), 21
sum() (built-in function), 16

T
tan() (built-in function), 21
Tcalculus (built-in class), 8
Tconstant() (built-in function), 10
Teye() (built-in function), 10
times() (built-in function), 16
Tones() (built-in function), 10
tprod() (built-in function), 16, 17
trace() (built-in function), 24
traceinv() (built-in function), 24
transpose() (built-in function), 24
Tvariable() (built-in function), 8
Tvars2optimizeCS() (built-in function), 34
Tzeros() (built-in function), 10

V
vec2tensor() (built-in function), 12
vertcat() (built-in function), 12
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